
(Yet Another) Tiny Scheme
A Partial Revised(5) Report Scheme Implementation

Michael K K Montague

Copyright c© 2005 Michael K K Montague
This document is based on the Revised(5) Report on the Algorithmic Language
Scheme.
Permission is granted to make and distribute whole or partial copies of this
document without any restrictions.

i

Table of Contents

1 Introduction . 1

2 Expressions . 2
2.1 Literal Expressions . 2
2.2 Procedure Calls . 2
2.3 Procedures . 3
2.4 Assignments . 4
2.5 Conditionals . 4
2.6 Binding Constructs . 6
2.7 Sequencing . 8

3 Program Structure . 9
3.1 Programs . 9
3.2 Definitions . 9

3.2.1 Top Level Definitions . 9
3.2.2 Internal Definitions . 10

4 Builtin Procedures . 11
4.1 Equivalence Predicates . 11
4.2 Numbers . 13
4.3 Booleans . 15
4.4 Pairs and Lists . 16
4.5 Symbols . 20
4.6 Characters . 21
4.7 Strings . 22
4.8 Vectors . 24
4.9 Control Features . 25
4.10 Input and Output . 26

5 Implementation . 28
5.1 Limitations . 28
5.2 Notes . 28

Index . 29

Chapter 1: Introduction 1

1 Introduction

Chapter 2: Expressions 2

2 Expressions

2.1 Literal Expressions

[Syntax]quote datum
(quote datum) evaluates to datum. datum may be any external representation of a
Scheme object. This notation is used to include literal constants in Scheme code.

(quote a)
⇒ a

(quote #(a b c))
⇒ #(a b c)

(quote (+ 1 2))
⇒ (+ 1 2)

(quote datum) may be abbreviated as ’datum . The two notations are equivalent in
all respects.

’a
⇒ a

’#(a b c)
⇒ #(a b c)

’()
⇒ ()

’(+ 1 2)
⇒ (+ 1 2)

’(quote a)
⇒ (quote a)

’’a
⇒ (quote a)

Numerical constants, string constants, character constants, and boolean constants
evaluate “to themselves”; they need not be quoted.

’"abc"
⇒ "abc"

"abc"
⇒ "abc"

’145932
⇒ 145932

145932
⇒ 145932

’#t
⇒ #t

#t
⇒ #t

2.2 Procedure Calls

(operator operand1 ...)

Chapter 2: Expressions 3

A procedure call is written by simply enclosing in parentheses expressions for the pro-
cedure to be called and the arguments to be passed to it. The operator and operand
expressions are evaluated (in an unspecified order) and the resulting procedure is passed
the resulting arguments.

(+ 3 4)
⇒ 7

((if #f + *) 3 4)
⇒ 12

A number of procedures are available as the values of variables in the initial environment;
for example, the addition and multiplication procedures in the above examples are the values
of the variables + and *. New procedures are created by evaluating lambda expressions.
Procedure calls return one value.

2.3 Procedures

[Syntax]lambda formals body
Syntax: formals should be a formal arguments list as described below, and body
should be a sequence of one or more expressions.
Semantics: A lambda expression evaluates to a procedure. The environment in effect
when the lambda expression was evaluated is remembered as part of the procedure.
When the procedure is later called with some actual arguments, the environment in
which the lambda expression was evaluated will be extended by binding the variables
in the formal argument list to fresh locations, the corresponding actual argument
values will be stored in those locations, and the expressions in the body of the lambda
expression will be evaluated sequentially in the extended environment. The result of
the last expression in the body will be returned as the result of the procedure call.

(lambda (x) (+ x x))
⇒ #<procedure: #x123456>

((lambda (x) (+ x x)) 4)
⇒ 8

(define reverse-subtract
(lambda (x y) (- y x)))

(reverse-subtract 7 10)
⇒ 3

(define add4
(let ((x 4))

(lambda (y) (+ x y))))
(add4 6)

⇒ 10

formals should have one of the following forms:
• (variable1 ...): The procedure takes a fixed number of arguments; when the

procedure is called, the arguments will be stored in the bindings of the corre-
sponding variables.

• variable : The procedure takes any number of arguments; when the procedure
is called, the sequence of actual arguments is converted into a newly allocated
list, and the list is stored in the binding of the variable.

Chapter 2: Expressions 4

• (variable1 ... variable_n . variable_n+1): If a space-delimited period pre-
cedes the last variable, then the procedure takes n or more arguments, where n is
the number of formal arguments before the period (there must be at least one).
The value stored in the binding of the last variable will be a newly allocated list
of the actual arguments left over after all the other actual arguments have been
matched up against the other formal arguments.

It is an error for a variable to appear more than once in formals.
((lambda x x) 3 4 5 6)

⇒ (3 4 5 6)
((lambda (x y . z) z) 3 4 5 6)

⇒ (5 6)

2.4 Assignments

[Syntax]set! variable expression
expression is evaluated, and the resulting value is stored in the location to which
variable is bound. variable must be bound either in some region enclosing the set!
expression or at top level. The result of the set! expression is unspecified.

2.5 Conditionals

[Syntax]if test consequent alternate
[Syntax]if test consequent

Syntax: test, consequent, and alternate may be arbitrary expressions.
Semantics: An if expression is evaluated as follows: first, test is evaluated. If it
yields a true value, then consequent is evaluated and its value is returned. Otherwise
alternate is evaluated and its value is returned. If test yields a false value and no
alternate is specified, then the result of the expression is unspecified.

(if (> 3 2) ’yes ’no)
⇒ yes

(if (> 2 3) ’yes ’no)
⇒ no

(if (> 3 2) (- 3 2) (+ 3 2))
⇒ 1

[Syntax]cond clause1 clause2 . . .
Syntax: Each clause should be of the form

(test expression1 ...)

where test is any expression. Alternatively, a clause may be of the form
(test => expression)

The last clause may be an “else clause,” which has the form
(else expression1 expression2 ...)

Semantics: A cond expression is evaluated by evaluating the test expressions of suc-
cessive clauses in order until one of them evaluates to a true value. When a test
evaluates to a true value, then the remaining expressions in its clause are evaluated

Chapter 2: Expressions 5

in order, and the result of the last expression in the clause is returned as the result
of the entire cond expression. If the selected clause contains only the test and no
expressions, then the value of the test is returned as the result. If the selected clause
uses the => alternate form, then the expression is evaluated. Its value must be a
procedure that accepts one argument; this procedure is then called on the value of
the test and the value returned by this procedure is returned by the cond expression.
If all tests evaluate to false values, and there is no else clause, then the result of the
conditional expression is unspecified; if there is an else clause, then its expressions
are evaluated, and the value of the last one is returned.

(cond
((> 3 2) ’greater)
((< 3 2) ’less))
⇒ greater

(cond
((> 3 3) ’greater)
((< 3 3) ’less)
(else ’equal))
⇒ equal

(cond
((assv ’b ’((a 1) (b 2))) => cadr)
(else #f))
⇒ 2

[Syntax]case key clause1 clause2 . . .
Syntax: key may be any expression. Each clause should have the form

((datum1 ...) expression1 expression2 ...)

where each datum is an external representation of some object. All the datums must
be distinct. The last clause may be an “else clause,” which has the form

(else expression1 expression2 ...)

Semantics: A case expression is evaluated as follows. key is evaluated and its result
is compared against each datum. If the result of evaluating key is equivalent (in
the sense of eqv?) to a datum, then the expressions in the corresponding clause
are evaluated from left to right and the result of the last expression in the clause is
returned as the result of the case expression. If the result of evaluating key is different
from every datum, then if there is an else clause its expressions are evaluated and the
result of the last is the result of the case expression; otherwise the result of the case
expression is unspecified.

(case
(* 2 3)
((2 3 5 7) ’prime)
((1 4 6 8 9) ’composite))
⇒ composite

(case
(car ’(c d))
((a e i o u) ’vowel)
((w y) ’semivowel)

Chapter 2: Expressions 6

(else ’consonant))
⇒ consonant

[Syntax]and test1 . . .
The test expressions are evaluated from left to right, and the value of the first ex-
pression that evaluates to a false value is returned. Any remaining expressions are
not evaluated. If all the expressions evaluate to true values, the value of the last
expression is returned. If there are no expressions then #t is returned.

(and (= 2 2) (> 2 1))
⇒ #t

(and (= 2 2) (< 2 1))
⇒ #f

(and 1 2 ’c ’(f g))
⇒ (f g)

(and)
⇒ #t

[Syntax]or test1 . . .
The test expressions are evaluated from left to right, and the value of the first expres-
sion that evaluates to a true value is returned. Any remaining expressions are not
evaluated. If all expressions evaluate to false values, the value of the last expression
is returned. If there are no expressions then #f is returned.

(or (= 2 2) (> 2 1))
⇒ #t

(or (= 2 2) (< 2 1))
⇒ #t

(or #f #f #f)
⇒ #f

(or (memq ’b ’(a b c)) (/ 3 0))
⇒ (b c)

2.6 Binding Constructs

The two binding constructs let and letrec give Scheme a block structure, like Algol 60.
The syntax of the two constructs is identical, but they differ in the regions they establish
for their variable bindings. In a let expression, the initial values are computed before any
of the variables become bound; while in a letrec expression, all the bindings are in effect
while their initial values are being computed, thus allowing mutually recursive definitions.

[Syntax]let bindings body
Syntax: bindings should have the form

((variable1 init1) ...)

where each init is an expression, and body should be a sequence of one or more
expressions. It is an error for a variable to appear more than once in the list of
variables being bound.
Semantics: The inits are evaluated in the current environment (in some unspecified
order), the variables are bound to fresh locations holding the results, the body is

Chapter 2: Expressions 7

evaluated in the extended environment, and the value of the last expression of body
is returned. Each binding of a variable has body as its region.

(let
((x 2) (y 3))
(* x y))
⇒ 6

(let
((x 2) (y 3))
(let

((x 7)
(z (+ x y)))
(* z x)))

⇒ 35

[Syntax]letrec bindings body
Syntax: bindings should have the form

((variable1 init1) ...)

and body should be a sequence of one or more expressions. It is an error for a variable
to appear more than once in the list of variables being bound.

Semantics: The variables are bound to fresh locations holding undefined values, the
inits are evaluated in the resulting environment (in some unspecified order), each
variable is assigned to the result of the corresponding init, the body is evaluated in
the resulting environment, and the value of the last expression in body is returned.
Each binding of a variable has the entire letrec expression as its region, making it
possible to define mutually recursive procedures.

(letrec
((even?

(lambda (n)
(if (zero? n)

#t
(odd? (- n 1)))))

(odd?
(lambda (n)

(if (zero? n)
#f
(even? (- n 1))))))

(even? 88))
⇒ #t

One restriction on letrec is very important: it must be possible to evaluate each
init without assigning or referring to the value of any variable. If this restriction
is violated, then it is an error. The restriction is necessary because Scheme passes
arguments by value rather than by name. In the most common uses of letrec, all
the inits are lambda expressions and the restriction is satisfied automatically.

Chapter 2: Expressions 8

2.7 Sequencing

[Syntax]begin expression1 expression2 . . .
The expressions are evaluated sequentially from left to right, and the value of the last
expression is returned. This expression type is used to sequence side effects such as
input and output.

(define x 0)
(begin

(set! x 5)
(+ x 1))
⇒ 6

Chapter 3: Program Structure 9

3 Program Structure

3.1 Programs

A Scheme program consists of a sequence of expressions and definitions. Expressions are
described in chapter Chapter 2 [Expressions], page 2; definitions are the subject of the rest
of the present chapter.

Definitions occurring at the top level of a program can be interpreted declaratively. They
cause bindings to be created in the top level environment or modify the value of existing
top-level bindings. Expressions occurring at the top level of a program are interpreted im-
peratively; they are executed in order when the program is invoked or loaded, and typically
perform some kind of initialization.

At the top level of a program (begin form1 ...) is equivalent to the sequence of ex-
pressions, definitions, and syntax definitions that form the body of the begin.

3.2 Definitions

Definitions are valid in some, but not all, contexts where expressions are allowed. They are
valid only at the top level of a program and at the beginning of a body.

A definition should have one of the following forms:
• (define variable expression)

• (define (variable formals) body)

formals should be either a sequence of zero or more variables, or a sequence of one
or more variables followed by a space-delimited period and another variable (as in a
lambda expression). This form is equivalent to

(define variable

(lambda (formals) body))

• (define (variable . formal) body)

formal should be a single variable. This form is equivalent to
(define variable

(lambda formal body))

3.2.1 Top Level Definitions

At the top level of a program, a definition
(define variable expression)

has essentially the same effect as the assignment expression
(set! variable expression)

if variable is bound. If variable is not bound, however, then the definition will bind
variable to a new location before performing the assignment, whereas it would be an error
to perform a set! on an unbound variable.

(define add3
(lambda (x) (+ x 3)))

(add3 3)

Chapter 3: Program Structure 10

⇒ 6
(define first car)
(first ’(1 2))

⇒ 1

3.2.2 Internal Definitions

Definitions may occur at the beginning of a body (that is, the body of a lambda, let,
or letrec expression or that of a definition of an appropriate form). Such definitions are
known as internal definitions as opposed to the top level definitions described above. The
variable defined by an internal definition is local to the body. That is, variable is bound
rather than assigned, and the region of the binding is the entire body. For example,

(let
((x 5))
(define foo (lambda (y) (bar x y)))
(define bar (lambda (a b) (+ (* a b) a)))
(foo (+ x 3)))
⇒ 45

A body containing internal definitions can always be converted into a completely equiva-
lent letrec expression. For example, the let expression in the above example is equivalent
to

(let ((x 5))
(letrec

((foo (lambda (y) (bar x y)))
(bar (lambda (a b) (+ (* a b) a))))

(foo (+ x 3))))

Just as for the equivalent ‘letrec’ expression, it must be possible to evaluate each
expression of every internal definition in a body without assigning or referring to the value
of any variable being defined.

Wherever an internal definition may occur (begin definition1 ...) is equivalent to
the sequence of definitions that form the body of the begin.

Chapter 4: Builtin Procedures 11

4 Builtin Procedures

4.1 Equivalence Predicates

A predicate is a procedure that always returns a boolean value (#t or #f). An equivalence
predicate is the computational analogue of a mathematical equivalence relation (it is sym-
metric, reflexive, and transitive). Of the equivalence predicates described in this section,
eq? is the finest or most discriminating, and equal? is the coarsest. Eqv? is slightly less
discriminating than eq?.

[Procedure]eqv? obj1 obj2
The eqv? procedure defines a useful equivalence relation on objects. Briefly, it returns
#t if obj1 and obj2 should normally be regarded as the same object.
The eqv? procedure returns #t if:
• obj1 and obj2 are both #t or both #f.
• obj1 and obj2 are both symbols and

(string=? (symbol->string obj1)
(symbol->string obj2))

⇒ #t

• obj1 and obj2 are both numbers and are numerically equal according to the =
procedure (see Section 4.2 [Numbers], page 13).

• obj1 and obj2 are both characters and are the same character according to the
char=? procedure (see Section 4.6 [Characters], page 21).

• both obj1 and obj2 are the empty list.
• obj1 and obj2 are pairs, vectors, or strings that denote the same locations.
• obj1 and obj2 are the same procedure.

The eqv? procedure returns #f if:
• obj1 and obj2 are of different types.
• one of obj1 and obj2 is #t but the other is #f.
• obj1 and obj2 are symbols but

(string=? (symbol->string obj1)
(symbol->string obj2))

⇒ #f

• obj1 and obj2 are numbers for which the = procedure returns #f.
• obj1 and obj2 are characters for which the char=? procedure returns #f.
• one of obj1 and obj2 is the empty list but the other is not.
• obj1 and obj2 are pairs, vectors, or strings that denote distinct locations.
• obj1 and obj2 are different procedures.

(eqv? ’a ’a)
⇒ #t

(eqv? ’a ’b)
⇒ #f

Chapter 4: Builtin Procedures 12

(eqv? 2 2)
⇒ #t

(eqv? ’() ’())
⇒ #t

(eqv? 100000000 100000000)
⇒ #t

(eqv? (cons 1 2) (cons 1 2))
⇒ #f

(eqv? (lambda () 1)
(lambda () 2))

⇒ #f
(eqv? #f ’nil)

⇒ #f
(let ((p (lambda (x) x)))

(eqv? p p))
⇒ #t

[Procedure]eq? obj1 obj2
eq? is similar to eqv? except that in some cases it is capable of discerning distinctions
finer than those detectable by eqv?.
eq? and eqv? are guaranteed to have the same behavior on symbols, booleans, the
empty list, pairs, procedures, and non-empty strings and vectors.

(eq? ’a ’a)
⇒ #t

(eq? (list ’a) (list ’a))
⇒ #f

(eq? ’() ’())
⇒ #t

(eq? car car)
⇒ #t

(let ((x ’(a)))
(eq? x x))
⇒ #t

(let ((x ’#()))
(eq? x x))
⇒ #t

(let ((p (lambda (x) x)))
(eq? p p))
⇒ #t

[Procedure]equal? obj1 obj2
equal? recursively compares the contents of pairs, vectors, and strings, applying eqv?
on other objects such as numbers and symbols. A rule of thumb is that objects are
generally equal? if they print the same. equal? may fail to terminate if its arguments
are circular data structures.

(equal? ’a ’a)
⇒ #t

Chapter 4: Builtin Procedures 13

(equal? ’(a) ’(a))
⇒ #t

(equal? ’(a (b) c)
’(a (b) c))

⇒ #t
(equal? "abc" "abc")

⇒ #t
(equal? 2 2)

⇒ #t
(equal? (make-vector 5 ’a)

(make-vector 5 ’a))
⇒ #t

4.2 Numbers

The only numberical type supported by Tiny Scheme is exact integers.

[Procedure]number? obj
[Procedure]integer? obj

These numerical type predicates can be applied to any kind of argument, including
non-numbers. They return #t if the object is of the named type, and otherwise they
return #f.

(number? 10)
⇒ #t

(number? ’a)
⇒ #f

(integer? 10)
⇒ #t

(integer? ’a)
⇒ #f

[Procedure]= z1 z2 z3 . . . ,
[Procedure]< x1 x2 x3 . . . ,
[Procedure]> x1 x2 x3 . . . ,
[Procedure]<= x1 x2 x3 . . . ,
[Procedure]>= x1 x2 x3 . . . ,

These procedures return #t if their arguments are (respectively): equal, monotonically
increasing, monotonically decreasing, monotonically nondecreasing, or monotonically
nonincreasing.
These predicates are required to be transitive.

[Procedure]zero? z
[Procedure]positive? x
[Procedure]negative? x
[Procedure]odd? n
[Procedure]even? n

These numerical predicates test a number for a particular property, returning #t or
#f.

Chapter 4: Builtin Procedures 14

[Procedure]max x1 x2 . . . ,
[Procedure]min x1 x2 . . . ,

These procedures return the maximum or minimum of their arguments.

[Procedure]+ z1 . . . ,
[Procedure]* z1 . . . ,

These procedures return the sum or product of their arguments.
(+ 3 4)

⇒ 7
(+ 3)

⇒ 3
(+)

⇒ 0
(* 4)

⇒ 4
(*)

⇒ 1

[Procedure]- z1 z2
[Procedure]- z
[Procedure]- z1 z2 . . . ,
[Procedure]/ z1 z2
[Procedure]/ z
[Procedure]/ z1 z2 . . . ,

With two or more arguments, these procedures return the difference or quotient of
their arguments, associating to the left. With one argument, however, they return
the additive or multiplicative inverse of their argument.

(- 3 4)
⇒ -1

(- 3 4 5)
⇒ -6

(- 3)
⇒ -3

(/ 40 4 5)
⇒ 2

[Procedure]abs x
abs returns the absolute value of its argument.

(abs -7)
⇒ 7

[Procedure]remainder n1 n2
This procedure implements number-theoretic (integer) division. n2 should be non-
zero.

(remainder 13 4)
⇒ 1

(remainder -13 4)

Chapter 4: Builtin Procedures 15

⇒ -1
(remainder 13 -4)

⇒ 1
(remainder -13 -4)

⇒ -1

[Procedure]number->string z
[Procedure]number->string z radix

radix must be an exact integer, either 2, 8, 10, or 16. If omitted, radix defaults to
10. The procedure number->string takes a number and a radix and returns as a
string an external representation of the given number in the given radix. The result
returned by number->string never contains an explicit radix prefix.

[Procedure]string->number string
Returns a number of the maximally precise representation expressed by the given
string. If string is not a syntactically valid notation for a number, then string-
>number returns #f.

4.3 Booleans

The standard boolean objects for true and false are written as #t and #f. What really
matters, though, are the objects that the Scheme conditional expressions (if, cond, and,
or) treat as true or false. The phrase “a true value” (or sometimes just “true”) means any
object treated as true by the conditional expressions, and the phrase “a false value” (or
“false”) means any object treated as false by the conditional expressions.

Of all the standard Scheme values, only #f counts as false in conditional expressions.
Except for #f, all standard Scheme values, including #t, pairs, the empty list, symbols,
numbers, strings, vectors, and procedures, count as true.

Programmers accustomed to other dialects of Lisp should be aware that Scheme distin-
guishes both #f and the empty list from the symbol nil.

Boolean constants evaluate to themselves, so they do not need to be quoted in programs.
#t

⇒ #t
#f

⇒ #f
’#f

⇒ #f

[Procedure]not obj
not returns #t if obj is false, and returns #f otherwise.

(not #t)
⇒ #f

(not 3)
⇒ #f

(not (list 3))
⇒ #f

(not #f)

Chapter 4: Builtin Procedures 16

⇒ #t
(not ’())

⇒ #f
(not (list))

⇒ #f
(not ’nil)

⇒ #f

[Procedure]boolean? obj
boolean? returns #t if obj is either #t or #f and returns #f otherwise.

(boolean? #f)
⇒ #t

(boolean? 0)
⇒ #f

(boolean? ’())
⇒ #f

4.4 Pairs and Lists

A pair (sometimes called a dotted pair) is a record structure with two fields called the car
and cdr fields (for historical reasons). Pairs are created by the procedure cons. The car and
cdr fields are accessed by the procedures car and cdr. The car and cdr fields are assigned
by the procedures set-car! and set-cdr!.

Pairs are used primarily to represent lists. A list can be defined recursively as either the
empty list or a pair whose cdr is a list. The objects in the car fields of successive pairs of a
list are the elements of the list. For example, a two-element list is a pair whose car is the
first element and whose cdr is a pair whose car is the second element and whose cdr is the
empty list. The length of a list is the number of elements, which is the same as the number
of pairs.

The empty list is a special object of its own type (it is not a pair); it has no elements
and its length is zero. The empty list is written () .

A chain of pairs not ending in the empty list is called an improper list. Note that an
improper list is not a list.

[Procedure]pair? obj
pair? returns #t if obj is a pair, and otherwise returns #f.

(pair? ’(a . b))
⇒ #t

(pair? ’(a b c))
⇒ #t

(pair? ’())
⇒ #f

(pair? ’#(a b))
⇒ #f

[Procedure]cons obj1 obj2
Returns a newly allocated pair whose car is obj1 and whose cdr is obj2. The pair is
guaranteed to be different (in the sense of eqv?) from every existing object.

Chapter 4: Builtin Procedures 17

(cons ’a ’())
⇒ (a)

(cons ’(a) ’(b c d))
⇒ ((a) b c d)

(cons "a" ’(b c))
⇒ ("a" b c)

(cons ’a 3)
⇒ (a . 3)

(cons ’(a b) ’c)
⇒ ((a b) . c)

[Procedure]car pair
Returns the contents of the car field of pair. Note that it is an error to take the car
of the empty list.

(car ’(a b c))
⇒ a

(car ’((a) b c d))
⇒ (a)

(car ’(1 . 2))
⇒ 1

[Procedure]cdr pair
Returns the contents of the cdr field of pair. Note that it is an error to take the cdr
of the empty list.

(cdr ’((a) b c d))
⇒ (b c d)

(cdr ’(1 . 2))
⇒ 2

[Procedure]set-car! pair obj
Stores obj in the car field of pair. The value returned by set-car! is unspecified.

[Procedure]set-cdr! pair obj
Stores obj in the cdr field of pair. The value returned by set-cdr! is unspecified.

[Procedure]null? obj
Returns #t if obj is the empty list, otherwise returns #f.

[Procedure]list? obj
Returns #t if obj is a list, otherwise returns #f. By definition, all lists have finite
length and are terminated by the empty list.

(list? ’(a b c))
⇒ #t

(list? ’())
⇒ #t

(list? ’(a . b))
⇒ #f

(let ((x (list ’a)))

Chapter 4: Builtin Procedures 18

(set-cdr! x x)
(list? x))
⇒ #f

[Procedure]list obj . . . ,
Returns a newly allocated list of its arguments.

(list ’a (+ 3 4) ’c)
⇒ (a 7 c)

(list)
⇒ ()

[Procedure]length list
Returns the length of list.

(length ’(a b c))
⇒ 3

(length ’(a (b) (c d e)))
⇒ 3

(length ’())
⇒ 0

[Procedure]append list . . . ,
Returns a list consisting of the elements of the first list followed by the elements of
the other lists.

(append ’(x) ’(y))
⇒ (x y)

(append ’(a) ’(b c d))
⇒ (a b c d)

(append ’(a (b)) ’((c)))
⇒ (a (b) (c))

The resulting list is always newly allocated, except that it shares structure with the
last list argument. The last argument may actually be any object; an improper list
results if the last argument is not a proper list.

(append ’(a b) ’(c . d))
⇒ (a b c . d)

(append ’() ’a)
⇒ a

[Procedure]reverse list
Returns a newly allocated list consisting of the elements of list in reverse order.

(reverse ’(a b c))
⇒ (c b a)

(reverse ’(a (b c) d (e (f))))
⇒ ((e (f)) d (b c) a)

[Procedure]list-tail list k
Returns the sublist of list obtained by omitting the first k elements. It is an error if
list has fewer than k elements. list-tail could be defined by

Chapter 4: Builtin Procedures 19

(define list-tail
(lambda (x k)

(if (zero? k)
x
(list-tail (cdr x) (- k 1)))))

[Procedure]list-ref list k
Returns the kth element of list. (This is the same as the car of (list-tail list

k).) It is an error if list has fewer than k elements.
(list-ref ’(a b c d) 2)

⇒ c

[Procedure]memq obj list
[Procedure]memv obj list
[Procedure]member obj list

These procedures return the first sublist of list whose car is obj, where the sublists
of list are the non-empty lists returned by (list-tail list k) for k less than the
length of list. If obj does not occur in list, then #f (not the empty list) is returned.
memq uses eq? to compare obj with the elements of list, while memv uses eqv? and
member uses equal?.

(memq ’a ’(a b c))
⇒ (a b c)

(memq ’b ’(a b c))
⇒ (b c)

(memq ’a ’(b c d))
⇒ #f

(memq (list ’a) ’(b (a) c))
⇒ #f

(member (list ’a)
’(b (a) c))

⇒ ((a) c)
(memv 101 ’(100 101 102))

⇒ (101 102)

[Procedure]assq obj alist
[Procedure]assv obj alist
[Procedure]assoc obj alist

alist (for “association list”) must be a list of pairs. These procedures find the first
pair in alist whose car field is obj, and returns that pair. If no pair in alist has obj as
its car, then #f (not the empty list) is returned. assq uses eq? to compare obj with
the car fields of the pairs in alist, while assv uses eqv? and assoc uses equal?.

(define e ’((a 1) (b 2) (c 3)))
(assq ’a e)

⇒ (a 1)
(assq ’b e)

⇒ (b 2)
(assq ’d e)

Chapter 4: Builtin Procedures 20

⇒ #f
(assq (list ’a) ’(((a)) ((b)) ((c))))

⇒ #f
(assoc (list ’a) ’(((a)) ((b)) ((c))))

⇒ ((a))
(assv 5 ’((2 3) (5 7) (11 13)))

⇒ (5 7)

4.5 Symbols

Symbols are objects whose usefulness rests on the fact that two symbols are identical (in
the sense of eqv?) if and only if their names are spelled the same way.

It is guaranteed that any symbol that has been returned as part of a literal expression,
or read using the read procedure, and subsequently written out using the write procedure,
will read back in as the identical symbol (in the sense of eqv?). The string->symbol
procedure, however, can create symbols for which this write/read invariance may not hold
because their names contain special characters or letters in the non-standard case.

[Procedure]symbol? obj
Returns #t if obj is a symbol, otherwise returns #f.

(symbol? ’foo)
⇒ #t

(symbol? (car ’(a b)))
⇒ #t

(symbol? "bar")
⇒ #f

(symbol? ’nil)
⇒ #t

(symbol? ’())
⇒ #f

(symbol? #f)
⇒ #f

[Procedure]symbol->string symbol
Returns the name of symbol as a string. If the symbol was part of an object returned
as the value of a literal expression or by a call to the read procedure, and its name
contains alphabetic characters, then the string returned will contain characters in
lower case. If the symbol was returned by string->symbol, the case of characters
in the string returned will be the same as the case in the string that was passed to
string->symbol. It is an error to apply mutation procedures like string-set! to
strings returned by this procedure.

(symbol->string ’flying-fish)
⇒ "flying-fish"

(symbol->string ’Martin)
⇒ "martin"

(symbol->string (string->symbol "Malvina"))
⇒ "Malvina"

Chapter 4: Builtin Procedures 21

[Procedure]string->symbol string
Returns the symbol whose name is string. This procedure can create symbols with
names containing special characters or letters in the non-standard case, but it is
usually a bad idea to create such symbols because in some implementations of Scheme
they cannot be read as themselves. See symbol->string.

(eq? ’mISSISSIppi ’mississippi)
⇒ #t

(string->symbol "mISSISSIppi")
⇒ mISSISSIppi

(eq? ’bitBlt (string->symbol "bitBlt"))
⇒ #f

(eq? ’JollyWog (string->symbol (symbol->string ’JollyWog)))
⇒ #t

(string=? "K. Harper, M.D." (symbol->string
(string->symbol "K. Harper, M.D.")))
⇒ #t

4.6 Characters

Characters are objects that represent printed characters such as letters and digits. Charac-
ters are written using the notation #\character. Case is significant. If character in #\char-
acter is alphabetic, then the character following character must be a delimiter character
such as a space or parenthesis. Characters written in the #\ notation are self-evaluating.
That is, they do not have to be quoted in programs.

Some of the procedures that operate on characters ignore the difference between upper
case and lower case. The procedures that ignore case have -ci (for “case insensitive”)
embedded in their names.

[Procedure]char? obj
Returns #t if obj is a character, otherwise returns #f.

[Procedure]char=? char1 char2
[Procedure]char<? char1 char2
[Procedure]char>? char1 char2
[Procedure]char<=? char1 char2
[Procedure]char>=? char1 char2

These procedures impose a total ordering on the set of characters.

[Procedure]char-ci=? char1 char2
[Procedure]char-ci<? char1 char2
[Procedure]char-ci>? char1 char2
[Procedure]char-ci<=? char1 char2
[Procedure]char-ci>=? char1 char2

These procedures are similar to char=? et cetera, but they treat upper case and lower
case letters as the same. For example, (char-ci=? #\A #\a) returns #t.

[Procedure]char-alphabetic? char
[Procedure]char-numeric? char

Chapter 4: Builtin Procedures 22

[Procedure]char-whitespace? char
These procedures return #t if their arguments are alphabetic, numeric, or whitespace
characters, respectively, otherwise they return #f.

[Procedure]char->integer char
[Procedure]integer->char n

Given a character, char->integer returns an exact integer representation of the char-
acter. Given an exact integer that is the image of a character under char->integer,
integer->char returns that character. These procedures implement order-preserving
isomorphisms between the set of characters under the char<=? ordering and some
subset of the integers under the <= ordering.

[Procedure]char-upcase char
[Procedure]char-downcase char

These procedures return a character char2 such that (char-ci=? char char2). In
addition, if char is alphabetic, then the result of char-upcase is upper case and the
result of char-downcase is lower case.

4.7 Strings

Strings are sequences of characters. Strings are written as sequences of characters enclosed
within doublequotes ("). A doublequote can be written inside a string only by escaping it
with a backslash (\). A backslash can be written inside a string only by escaping it with
another backslash. A string constant may continue from one line to the next.

The length of a string is the number of characters that it contains. This number is an
exact, non-negative integer that is fixed when the string is created. The valid indexes of
a string are the exact non-negative integers less than the length of the string. The first
character of a string has index 0, the second has index 1, and so on.

In phrases such as “the characters of string beginning with index start and ending with
index end,” it is understood that the index start is inclusive and the index end is exclusive.
Thus if start and end are the same index, a null substring is referred to, and if start is zero
and end is the length of string, then the entire string is referred to.

Some of the procedures that operate on strings ignore the difference between upper and
lower case. The versions that ignore case have -ci (for “case insensitive”) embedded in
their names.

[Procedure]string? obj
Returns #t if obj is a string, otherwise returns #f.

[Procedure]make-string k
[Procedure]make-string k char

make-string returns a newly allocated string of length k. If char is given, then all
elements of the string are initialized to char, otherwise the contents of the string are
unspecified.

[Procedure]string char . . . ,
Returns a newly allocated string composed of the arguments.

Chapter 4: Builtin Procedures 23

[Procedure]string-length string
Returns the number of characters in the given string.

[Procedure]string-ref string k
k must be a valid index of string. string-ref returns character k of string using
zero-origin indexing.

[Procedure]string-set! string k char
k must be a valid index of string. string-set! stores char in element k of string
and returns an unspecified value.

[Procedure]string=? string1 string2
[Procedure]string-ci=? string1 string2

Returns #t if the two strings are the same length and contain the same characters in
the same positions, otherwise returns #f. string-ci=? treats upper and lower case
letters as though they were the same character, but string=? treats upper and lower
case as distinct characters.

[Procedure]string<? string1 string2
[Procedure]string>? string1 string2
[Procedure]string<=? string1 string2
[Procedure]string>=? string1 string2
[Procedure]string-ci<? string1 string2
[Procedure]string-ci>? string1 string2
[Procedure]string-ci<=? string1 string2
[Procedure]string-ci>=? string1 string2

These procedures are the lexicographic extensions to strings of the corresponding
orderings on characters. For example, string<? is the lexicographic ordering on
strings induced by the ordering char<? on characters. If two strings differ in length
but are the same up to the length of the shorter string, the shorter string is considered
to be lexicographically less than the longer string.

[Procedure]substring string start end
string must be a string, and start and end must be exact integers satisfying

0 <= start <= end <= (string-length string)
substring returns a newly allocated string formed from the characters of string
beginning with index start (inclusive) and ending with index end (exclusive).

[Procedure]string-append string . . . ,
Returns a newly allocated string whose characters form the concatenation of the given
strings.

[Procedure]string->list string
[Procedure]list->string list

string->list returns a newly allocated list of the characters that make up the given
string. list->string returns a newly allocated string formed from the characters in
the list list, which must be a list of characters. string->list and list->string are
inverses so far as equal? is concerned.

Chapter 4: Builtin Procedures 24

[Procedure]string-copy string
Returns a newly allocated copy of the given string.

[Procedure]string-fill! string char
Stores char in every element of the given string and returns an unspecified value.

4.8 Vectors

Vectors are heterogenous structures whose elements are indexed by integers. A vector
typically occupies less space than a list of the same length, and the average time required
to access a randomly chosen element is typically less for the vector than for the list.

The length of a vector is the number of elements that it contains. This number is a
non-negative integer that is fixed when the vector is created. The valid indexes of a vector
are the exact non-negative integers less than the length of the vector. The first element in
a vector is indexed by zero, and the last element is indexed by one less than the length of
the vector.

Vectors are written using the notation #(obj ...,). For example, a vector of length
3 containing the number zero in element 0, the list (2 2 2 2) in element 1, and the string
"Anna" in element 2 can be written as following:

#(0 (2 2 2 2) "Anna")

Note that this is the external representation of a vector, not an expression evaluating to
a vector. Like list constants, vector constants must be quoted:

’#(0 (2 2 2 2) "Anna")
⇒ #(0 (2 2 2 2) "Anna")

[Procedure]vector? obj
Returns #t if obj is a vector, otherwise returns #f.

[Procedure]make-vector k
[Procedure]make-vector k fill

Returns a newly allocated vector of k elements. If a second argument is given, then
each element is initialized to fill. Otherwise the initial contents of each element is
unspecified.

[Procedure]vector obj . . . ,
Returns a newly allocated vector whose elements contain the given arguments. Anal-
ogous to list.

(vector ’a ’b ’c)
⇒ #(a b c)

[Procedure]vector-length vector
Returns the number of elements in vector as an exact integer.

[Procedure]vector-ref vector k
k must be a valid index of vector. vector-ref returns the contents of element k of
vector.

(vector-ref ’#(1 1 2 3 5 8 13 21) 5)
⇒ 8

Chapter 4: Builtin Procedures 25

[Procedure]vector-set! vector k obj
k must be a valid index of vector. vector-set! stores obj in element k of vector.
The value returned by vector-set! is unspecified.

(let ((vec (vector 0 ’(2 2 2 2) "Anna")))
(vector-set! vec 1 ’("Sue" "Sue"))
vec)
⇒ #(0 ("Sue" "Sue") "Anna")

[Procedure]vector->list vector
[Procedure]list->vector list

vector->list returns a newly allocated list of the objects contained in the elements
of vector. list->vector returns a newly created vector initialized to the elements of
the list list.

(vector->list ’#(dah dah didah))
⇒ (dah dah didah)

(list->vector ’(dididit dah))
⇒ #(dididit dah)

[Procedure]vector-fill! vector fill
Stores fill in every element of vector. The value returned by vector-fill! is unspec-
ified.

4.9 Control Features

[Procedure]procedure? obj
Returns #t if obj is a procedure, otherwise returns #f.

(procedure? car)
⇒ #t

(procedure? ’car)
⇒ #f

(procedure? (lambda (x) (* x x)))
⇒ #t

(procedure? ’(lambda (x) (* x x)))
⇒ #f

[Procedure]apply proc arg1 . . . args
proc must be a procedure and args must be a list. Calls proc with the elements of
the list (append (list arg1 ...,) args) as the actual arguments.

(apply + (list 3 4))
⇒ 7

(define compose
(lambda (f g)

(lambda args
(f (apply g args)))))

((compose sqrt *) 12 75)
⇒ 30

Chapter 4: Builtin Procedures 26

[Procedure]map proc list1 list2 . . . ,
The lists must be lists, and proc must be a procedure taking as many arguments as
there are lists and returning a single value. If more than one list is given, then they
must all be the same length. map applies proc element-wise to the elements of the
lists and returns a list of the results, in order. The dynamic order in which proc is
applied to the elements of the lists is unspecified.

(map cadr ’((a b) (d e) (g h)))
⇒ (b e h)

(map (lambda (n) (* n n)) ’(1 2 3 4 5))
⇒ (1 4 9 16 25)

(map + ’(1 2 3) ’(4 5 6))
⇒ (5 7 9)

(let ((count 0))
(map (lambda (ignored)

(set! count (+ count 1))
count)
’(a b)))

⇒ (1 2)

[Procedure]for-each proc list1 list2 . . . ,
The arguments to for-each are like the arguments to map, but for-each calls proc
for its side effects rather than for its values. Unlike map, for-each is guaranteed to
call proc on the elements of the lists in order from the first element(s) to the last,
and the value returned by for-each is unspecified.

(let ((v (make-vector 5)))
(for-each (lambda (i)

(vector-set! v i (* i i)))
’(0 1 2 3 4))
v)

⇒ #(0 1 4 9 16)

4.10 Input and Output

[Procedure]write obj
Writes a written representation of obj to the current output. Strings that appear
in the written representation are enclosed in doublequotes, and within those strings
backslash and doublequote characters are escaped by backslashes. Character objects
are written using the #\ notation. write returns an unspecified value.

[Procedure]display obj
Writes a representation of obj to the current output. Strings that appear in the
written representation are not enclosed in doublequotes, and no characters are escaped
within those strings. Character objects appear in the representation as if written by
write-char instead of by write. display returns an unspecified value.

write is intended for producing machine-readable output and display is for produc-
ing human-readable output.

Chapter 4: Builtin Procedures 27

[Procedure]newline
Writes an end of line to the current output. Returns an unspecified value.

[Procedure]write-char char
Writes the character char (not an external representation of the character) to the
current output and returns an unspecified value.

Chapter 5: Implementation 28

5 Implementation

5.1 Limitations

Tiny Scheme is a partial implementation of Revised(5) Report on the Algorithmic Language
Scheme. In particular the following features are not supported.
• Continuations can not be captured. The procedures call-with-current-

continuation, call-with-values, and dynamic-wind are not available.
• Only a single value can be returned. The procedure values is not available.
• Macros are not supported. The syntax let-syntax, letrec-syntax, syntax-rules,

and define-syntax are not available.
• The procedure eval is not available.
• Only fixnums are supported as a numerical type. Only a subset of the numerical

procedures are available.
• Ports are not supported. Only a subset of the input and output procedures are available.

5.2 Notes

Notes about the implementation of Tiny Scheme.
• All objects except fixnums and characters are heap allocated.
• The garbage collector uses mark-and-sweep to determine what objects to reclaim.
• There is no compiler: syntax errors will not be detected until the code is executed.

Index 29

Index

region . 7

	Introduction
	Expressions
	Literal Expressions
	Procedure Calls
	Procedures
	Assignments
	Conditionals
	Binding Constructs
	Sequencing

	Program Structure
	Programs
	Definitions
	Top Level Definitions
	Internal Definitions

	Builtin Procedures
	Equivalence Predicates
	Numbers
	Booleans
	Pairs and Lists
	Symbols
	Characters
	Strings
	Vectors
	Control Features
	Input and Output

	Implementation
	Limitations
	Notes

	Index

